Search results for "unsupervised Fuzzy C-Means clustering"
showing 2 items of 2 documents
Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm
2017
Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is…
NeXt for neuro-radiosurgery: A fully automatic approach for necrosis extraction in brain tumor MRI using an unsupervised machine learning technique
2017
Stereotactic neuro-radiosurgery is a well-established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft-tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and gro…